CPO
objects are created by calling CPOConstructor
s, which are
R functions that have some parameters in common, use a convenient print.CPOConstructor
generic,
and always return a CPO
object. The mlrCPO package provides many CPOConstructor
functions, which can be listed using listCPO
. It is also possible to
create custom CPOConstructor
s using makeCPO
, makeCPORetrafoless
,
link{makeCPOTargetOp}
, and makeCPOExtendedTrafo
.
id | [ |
||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
export | [
Default is “export.default”. |
||||||||||||||
affect.type | [ |
||||||||||||||
affect.index | [ |
||||||||||||||
affect.names | [ |
||||||||||||||
affect.pattern | [ |
||||||||||||||
affect.invert | [ |
||||||||||||||
affect.pattern.ignore.case | [ |
||||||||||||||
affect.pattern.perl | [ |
||||||||||||||
affect.pattern.fixed | [ |
[CPO
] the constructed CPO.
CPOConstructors can be called like any R function, with any parameters given. Besides parameters that are
common to most CPOConstructors (listed below), it is possible to set CPO-specific hyperparameters in the
construction. Parameters that are being exported can also be modified later using the CPO
object, see the documentation there.
affect.*
parametersWhen creating a CPO
, it is possible to choose which columns of the given data the CPO operates
on, and which columns it will ignore. This is done using the affect.*
parameters. It is possible to
choose columns by types, indices, names, or a regular expression matching names.
print.CPOConstructor
for possibly verbose printing.
Other CPO lifecycle related:
CPOLearner
,
CPOTrained
,
CPO
,
NULLCPO
,
%>>%()
,
attachCPO()
,
composeCPO()
,
getCPOClass()
,
getCPOConstructor()
,
getCPOTrainedCPO()
,
identicalCPO()
,
makeCPO()
Other CPOConstructor related:
getCPOClass()
,
getCPOConstructor()
,
getCPOName()
,
identicalCPO()
,
makeCPO()
,
print.CPOConstructor()
#> [1] "CPOConstructor" "function"#> <<CPO pca(center = TRUE, scale = FALSE, tol = <NULL>, rank = <NULL>)>>#> <<CPO pca(center = TRUE, scale = FALSE, tol = <NULL>, rank = <NULL>)>> #> #> cpo.trafo: #> function (center = TRUE, scale = FALSE, tol = NULL, rank = NULL, #> data, target) #> { #> if (!ncol(data)) { #> emat = matrix(data = numeric(0), nrow = 0, ncol = 0) #> control = list(rotation = emat, scale = numeric(0), center = numeric(0)) #> return(data) #> } #> pcr = prcomp(as.matrix(data), center = center, scale. = scale, #> tol = tol, rank = rank) #> control = pcr[c("rotation", "scale", "center")] #> pcr$x #> } #> <environment: namespace:mlrCPO> #> #> cpo.retrafo: #> function (center = TRUE, scale = FALSE, tol = NULL, rank = NULL, #> data, control) #> { #> scale(as.matrix(data), center = control$center, scale = control$scale) %*% #> control$rotation #> } #> <environment: namespace:mlrCPO>cpoPca() # creating a CPO#> pca(center = TRUE, scale = FALSE)[not exp'd: tol = <NULL>, rank = <NULL>]#> [1] "CPOPrimitive" "CPO"