This is a CPOConstructor
to be used to create a
CPO
. It is called like any R function and returns
the created CPO
.
Impact coding converts factor levels of each (factorial) column to the difference between the target's conditional mean given this level, and the target's global mean.
cpoImpactEncodeRegr( smoothing = 1e-04, id, export = "export.default", affect.type = NULL, affect.index = integer(0), affect.names = character(0), affect.pattern = NULL, affect.invert = FALSE, affect.pattern.ignore.case = FALSE, affect.pattern.perl = FALSE, affect.pattern.fixed = FALSE )
smoothing | [ |
---|---|
id | [ |
export | [ |
affect.type | [ |
affect.index | [ |
affect.names | [ |
affect.pattern | [ |
affect.invert | [ |
affect.pattern.ignore.case | [ |
affect.pattern.perl | [ |
affect.pattern.fixed | [ |
[CPO
].
The state's $control
slot is a list of vectors for each
factorial data column. Each of these vectors has an entry for each of the
the data column's levels, and gives the respective impact value.
This function creates a CPO object, which can be applied to
Task
s, data.frame
s, link{Learner}
s
and other CPO objects using the %>>%
operator.
The parameters of this object can be changed after creation
using the function setHyperPars
. The other
hyper-parameter manipulating functins, getHyperPars
and getParamSet
similarly work as one expects.
If the “id” parameter is given, the hyperparameters will have this id as aprefix; this will, however, not change the parameters of the creator function.
CPOConstructor
CPO constructor functions are called with optional values of parameters, and additional “special” optional values.
The special optional values are the id
parameter, and the affect.*
parameters. The affect.*
parameters
enable the user to control which subset of a given dataset is affected. If no affect.*
parameters are given, all
data features are affected by default.
Other CPOs:
cpoApplyFunRegrTarget()
,
cpoApplyFun()
,
cpoAsNumeric()
,
cpoCache()
,
cpoCbind()
,
cpoCollapseFact()
,
cpoDropConstants()
,
cpoDummyEncode()
,
cpoFilterAnova()
,
cpoFilterCarscore()
,
cpoFilterChiSquared()
,
cpoFilterFeatures()
,
cpoFilterGainRatio()
,
cpoFilterInformationGain()
,
cpoFilterKruskal()
,
cpoFilterLinearCorrelation()
,
cpoFilterMrmr()
,
cpoFilterOneR()
,
cpoFilterPermutationImportance()
,
cpoFilterRankCorrelation()
,
cpoFilterRelief()
,
cpoFilterRfCImportance()
,
cpoFilterRfImportance()
,
cpoFilterRfSRCImportance()
,
cpoFilterRfSRCMinDepth()
,
cpoFilterSymmetricalUncertainty()
,
cpoFilterUnivariate()
,
cpoFilterVariance()
,
cpoFixFactors()
,
cpoIca()
,
cpoImpactEncodeClassif()
,
cpoImputeConstant()
,
cpoImputeHist()
,
cpoImputeLearner()
,
cpoImputeMax()
,
cpoImputeMean()
,
cpoImputeMedian()
,
cpoImputeMin()
,
cpoImputeMode()
,
cpoImputeNormal()
,
cpoImputeUniform()
,
cpoImpute()
,
cpoLogTrafoRegr()
,
cpoMakeCols()
,
cpoMissingIndicators()
,
cpoModelMatrix()
,
cpoOversample()
,
cpoPca()
,
cpoProbEncode()
,
cpoQuantileBinNumerics()
,
cpoRegrResiduals()
,
cpoResponseFromSE()
,
cpoSample()
,
cpoScaleMaxAbs()
,
cpoScaleRange()
,
cpoScale()
,
cpoSelect()
,
cpoSmote()
,
cpoSpatialSign()
,
cpoTransformParams()
,
cpoWrap()
,
makeCPOCase()
,
makeCPOMultiplex()