R/CPO_regrResiduals.R
cpoRegrResiduals.RdThis is a CPOConstructor to be used to create a
CPO. It is called like any R function and returns
the created CPO.
Given a regression learner, this CPO fits the learner to a
regression Task and replaces the regression target with
the residuals--the differences of the target values and the model's predictions--of the model.
For inversion, the predictions of the model for the prediction data are added to the predictions to be inverted.
If predict.se is TRUE, property.type == "se" inversion can also
be performed. In that case, the se of the incoming prediction and the se
of the internal model are assumed to be independently distributed, and the resulting
se is the pythagorean sum of the ses.
cpoRegrResiduals( learner, predict.se = FALSE, crr.train.residuals = "plain", crr.resampling = cv5, id, export = "export.default", affect.type = NULL, affect.index = integer(0), affect.names = character(0), affect.pattern = NULL, affect.invert = FALSE, affect.pattern.ignore.case = FALSE, affect.pattern.perl = FALSE, affect.pattern.fixed = FALSE )
| learner | [ |
|---|---|
| predict.se | [ |
| crr.train.residuals | [ |
| crr.resampling | [ |
| id | [ |
| export | [ |
| affect.type | [ |
| affect.index | [ |
| affect.names | [ |
| affect.pattern | [ |
| affect.invert | [ |
| affect.pattern.ignore.case | [ |
| affect.pattern.perl | [ |
| affect.pattern.fixed | [ |
[CPO].
The CPORetrafo state's $control slot is the WrappedModel
created when training the learner on the given data.
The CPOInverter state's $control slot is a data.frame of the “response” and
(if predict.se is TRUE) “se” columns of the prediction done by the model on the data.
This function creates a CPO object, which can be applied to
Tasks, data.frames, link{Learner}s
and other CPO objects using the %>>% operator.
The parameters of this object can be changed after creation
using the function setHyperPars. The other
hyper-parameter manipulating functins, getHyperPars
and getParamSet similarly work as one expects.
If the “id” parameter is given, the hyperparameters will have this id as aprefix; this will, however, not change the parameters of the creator function.
CPOConstructorCPO constructor functions are called with optional values of parameters, and additional “special” optional values.
The special optional values are the id parameter, and the affect.* parameters. The affect.* parameters
enable the user to control which subset of a given dataset is affected. If no affect.* parameters are given, all
data features are affected by default.
Other CPOs:
cpoApplyFunRegrTarget(),
cpoApplyFun(),
cpoAsNumeric(),
cpoCache(),
cpoCbind(),
cpoCollapseFact(),
cpoDropConstants(),
cpoDummyEncode(),
cpoFilterAnova(),
cpoFilterCarscore(),
cpoFilterChiSquared(),
cpoFilterFeatures(),
cpoFilterGainRatio(),
cpoFilterInformationGain(),
cpoFilterKruskal(),
cpoFilterLinearCorrelation(),
cpoFilterMrmr(),
cpoFilterOneR(),
cpoFilterPermutationImportance(),
cpoFilterRankCorrelation(),
cpoFilterRelief(),
cpoFilterRfCImportance(),
cpoFilterRfImportance(),
cpoFilterRfSRCImportance(),
cpoFilterRfSRCMinDepth(),
cpoFilterSymmetricalUncertainty(),
cpoFilterUnivariate(),
cpoFilterVariance(),
cpoFixFactors(),
cpoIca(),
cpoImpactEncodeClassif(),
cpoImpactEncodeRegr(),
cpoImputeConstant(),
cpoImputeHist(),
cpoImputeLearner(),
cpoImputeMax(),
cpoImputeMean(),
cpoImputeMedian(),
cpoImputeMin(),
cpoImputeMode(),
cpoImputeNormal(),
cpoImputeUniform(),
cpoImpute(),
cpoLogTrafoRegr(),
cpoMakeCols(),
cpoMissingIndicators(),
cpoModelMatrix(),
cpoOversample(),
cpoPca(),
cpoProbEncode(),
cpoQuantileBinNumerics(),
cpoResponseFromSE(),
cpoSample(),
cpoScaleMaxAbs(),
cpoScaleRange(),
cpoScale(),
cpoSelect(),
cpoSmote(),
cpoSpatialSign(),
cpoTransformParams(),
cpoWrap(),
makeCPOCase(),
makeCPOMultiplex()